European Society of Endodontology position statement: External Cervical Resorption

European Society of Endodontology (ESE) developed by: S. Patel, P. Lambrechts, H. Shemesh & A. Mavridou

Endodontic Postgraduate Unit, King’s College London Dental Institute, London; Private Practice, 45 Wimpole Street, London, UK; Conservative Dentistry, KU Leuven, Leuven, Belgium; and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands

Abstract

This Position Statement represents the consensus of an expert committee convened by the European Society of Endodontology (ESE) on External Cervical Resorption (ECR). The statement is based on current clinical and scientific evidence as well as the expertise of the committee. The primary aim is to provide a current authoritative position on the aetiology, histopathology, clinical presentation and management of ECR, and also to highlight areas where there is minimal evidence. Previously published review articles provide more detailed background information and the basis for this position statement (International Endodontic Journal 51, 1205, 2018, International Endodontic Journal 51, 1224, 2018). It is intended that this position statement will be updated at appropriate intervals, as further evidence emerges.

Keywords: CBCT, endodontology, external cervical resorption, guidelines.

Received 27 August 2018; accepted 27 August 2018

Introduction

External Cervical Resorption (ECR) usually starts in the cervical region of the affected tooth and initially involves only the periodontal ligament, cementum and dentine. However, in advanced stages the pulpal tissues may also become involved (Luso & Luder 2012, Mavridou et al. 2016a, Patel & Saberi 2018).

Until recently, the majority of the literature on this topic has been individual case (series) reports focusing either on the possible aetiology and/or treatment options. Literature on histopathology and diagnosis is limited (Mavridou et al. 2017a,b) contributing to the risk of inappropriate diagnosis and suboptimal management (Patel et al. 2018a,b).

Aetiology

For ECR to occur and propagate, it is assumed that there must be damage to the periodontal ligament (PDL) and cementum, in combination with a stimulating factor that can induce and maintain the activity of clastic cells (Mavridou et al. 2017a,b). The aetiology of ECR is poorly understood, and there may be aetiological factors which have not yet been identified. Previous history of dental trauma...
and/or orthodontic treatment are the factors most commonly associated with ECR (Tronstad 1988, Heithersay 1999, Mavridou et al. 2017a,b). However, more research is required to confirm the cause and effect relationship of these suggested aetiological factors (Patel et al. 2018a).

Histopathogenesis

It is well established that ECR is a complex and dynamic process (Luso & Luder 2012, Mavridou et al. 2016a, 2017b), consisting of three main stages: resorptive (initiation), resorptive (propagation) and reparative (remodelling) (Mavridou et al. 2016a, 2017b). Resorption and repair can occur in parallel in different areas of the same lesion. Increased understanding of the pathophysiology may ultimately result in strategies to prevent and/or control the disease process.

Clinical presentation

The most commonly affected teeth are maxillary incisors, canines, first molars and mandibular first molars (Mavridou et al. 2017a).

The presenting features of ECR are highly variable and dependent on several factors including location and degree of progression (Patel et al. 2018a). It commonly presents as an incidental finding on clinical and radiographic examination, though there may be clinical signs of localized gingival inflammation and bleeding, pulpal involvement, or in more advanced cases apical periodontitis (Bergmans et al. 2002, Patel et al. 2009a, Bhuva et al. 2011).

Highly vascularized lesions involving the supracoronal regions of teeth may appear as pink spots, though other lesions such as advanced areas of internal resorption extending into supragingival tissues may also present in this way. ECR may also be mistaken clinically and radiographically for cervical caries. However, high-quality evidence on the clinical presentation of ECR, as well as on its rate of progression, is lacking.

Radiographic assessment

There is no ‘classic’ radiographic appearance of ECR. The lesions may be radiolucent (resorptive phase), radiopaque (reparative phase) or present as a combination of both depending on the stage of the lesion. To differentiate ECR from internal inflammatory resorption, the outline of the root canal walls should be traceable through the lesion on periapical radiographs. The parallax imaging technique can be used to distinguish ECR from internal resorption as well as confirming the location of ECR lesions which are not detectable clinically by probing.

The limitations of periapical radiographs are well documented (Bender & Seltzer 1961, Patel et al. 2009b), and can result in misdiagnosis and/or poor management of ECR (Schwartz et al. 2010, Gunst et al. 2013, Vaz de Souza et al. 2017).

CBCT overcomes the limitations of periapical radiographs (Abella et al. 2012, Hashem et al. 2013, Rodriguez et al. 2017a,b) and can improve the diagnosis and/or management of ECR, by giving the clinician a precise appreciation of the nature and extent of the lesion; its is 3D morphology, degree of circumferential spread and proximity to the root canal (Mavridou et al. 2016b, Patel et al. 2016, Patel et al. 2018b).

The European Society of Endodontontology position statement on CBCT (ESE 2014) highlights the relevance of CBCT for the management of potentially restorable ECR lesions. The radiation dose of a small field of view CBCT scan is relatively low when compared to computed tomography and is in the same order of magnitude as multiple parallax radiographs (Loubele et al. 2012, Pauwels et al. 2012); this justifies its use for ECR diagnosis and follow-up. CBCT is recommended when the diagnosis is unclear, and/or treatment is being planned for ECR.

The Heithersay classification of ECR is based on two-dimensional imaging, resulting in underestimation and/or inadequate appreciation of the true extent of the resorptive process (Heithersay 1999, Vaz de Souza et al. 2017). The Patel classification is three-dimensional, based on periapical radiographs and CBCT (Patel et al. 2018b). The aim of this descriptive classification is to ensure an accurate diagnosis and aid communication between clinicians. In the future, it should allow objective outcome assessment, and aid in decision making and formulating a treatment plan that is likely to be successful (Fig. 1). Ultimately, treatment outcome and prognostic factors may also be assessed in relation to the three-dimensional nature of ECR (Patel et al. 2018b).

As with any device emitting ionizing radiation, the benefits of the CBCT scan must outweigh the risks (ICRP 2007, ESE 2014). The ALARA principle (‘as low as reasonably achievable’) must be applied.

Treatment

The aim of treatment is to retain affected teeth in a healthy and functional state and, when indicated, improve aesthetics (Patel et al. 2018c).
The objectives of treatment are elimination of the resorptive tissue, sealing of the resultant defect and portal of entry and prevention of recurrence.

Treatment options for ECR depend on the extent, nature and accessibility of the resorptive process; in some cases it may be necessary to raise a mucoperiosteal flap. The treatment options include (Table 1):

- **External repair of the resorptive defect ± endodontic treatment**
 - Excavation of the resorptive defect and restoration of the defect with a direct restoration, for example Patel class 1Ad, 2Ad, 2Bd. Root canal treatment may be indicated if there is (probable) pulp involvement, for example Patel class 1Ap, 2Ap, 2Bp.
 - **Internal repair and root canal treatment**
 - Root canal treatment, excavation and restoration of the resorptive defect with a direct plastic restoration, for example Patel class 2Cp, 2Dp, 3Cp, 3Dp.
 - **Intentional replantation**
 - Extraction of an endodontically treated tooth to allow restoration and/or recontouring of an otherwise inaccessible ECR defect, followed by reinsertion, for example Patel class 3Ad, 3Bd.

- **Periodic review**
 - Untreatable teeth may be reviewed on a periodic basis, for example Patel class 2-4Dd, 2-4Dp.

- **Extraction**
 - Indicated when ECR is inaccessible for treatment, or when the lesion is so extensive that the tooth may not be restored to satisfactory function or aesthetics.

More research is required to assess the impact of these management options on the outcome of treatment, as well as prognostic factors which may impact on the survival rate of affected teeth.

Prognosis

External Cervical Resorption lesions that are accessible and therefore amenable to conservative treatment have a good prognosis. However, patients should be advised of the limited evidence on treatment outcomes. Research is required to assess the impact of the size and stage of the lesion (resorptive versus reparative) on the outcome of treatment.

Conclusion

The clinical and radiographic presentation of ECR is highly variable with no classic presentation. The current evidence confirms that periapical radiography has significant limitations in accurately assessing the extent and nature of ECR and formulating an appropriate treatment plan. Therefore, CBCT is recommended when considering treatment of potentially treatable ECR lesions. Further high-quality research is required to support the evidence base in all aspects of ECR from its pathophysiology to effective clinical management.

References

